University Defence Research Centre (UDRC) In Signal Processing

Sponsored by the UK MOD

[C2] Arrayed MIMO Radar **Theme: Detection, Localisation and Tracking** PI: Prof. A. Manikas, Imperial College London **Researcher: H. Commin**

Theoretical Performance Bounds

• Uncertainty Hyperspheres of radius σ_e

- Model the uncertainty remaining in the system after L snapshots (see figure):

-
$$\sigma_e = \frac{1}{\sqrt{2(\mathrm{SNR} \times L)C}}$$

- The Parameter C ($0 < C \le 1$)
 - *C* models any additional uncertainty introduced by a practical MIMO radar parameter estimation algorithm.
 - Ideal algorithm: C = 1

• Structure of virtual array can be deduced from:

- Detection/resolution performance bounds are a function of:
 - $\Delta \theta_{det,res} = f \{ \text{array geometry, } \sigma_e \}$
- Virtual SIMO representation allows direct analysis of MIMO radar systems.

• **<u>Publication</u>**: H. Commin and A. Manikas, "The Figure of Merit 'C' for Comparing Superresolution Direction-Finding Algorithms", SSPD 2010.

Joint DOA, Doppler and Delay Estimation

- Three-parameter search partitioned into computationally-efficient two-stage subspace-based (delay, then DOA-Doppler) estimation • Complex fading coefficient estimation follows straightforwardly
- Simulation Example: (with true parameters shown in green)
 - K = 27 targets, tightly clustered in just two unique delays ($8T_c$ and $9T_c$)
 - Planar MIMO array configuration, with $\overline{N} = 5$ (X-shaped), N = 8 (linear)

 $\begin{bmatrix} 0 & 0 \\ 0 & 4 & 8 \end{bmatrix}$ 12 16 20 24 28 32 36 40 44 48 52 56 60

Delay (T_c)

• Step 3: Having estimated all other target parameters, complex path fading coefficients (magnitude and phase) are accurately estimated for all 27 targets:

• Allows full transmit-receive MIMO system geometry to be completely characterised, using the virtual SIMO array manifold

• **Publication**: H. Commin and A. Manikas, "Virtual SIMO Radar Modelling in Arrayed MIMO Radar", SSPD 2012.

• **Publication**: H. Commin and A. Manikas, "Spatiotemporal Arrayed MIMO Radar: Joint Doppler, Delay and DOA Estimation", IEEE Transactions on Signal Processing [Submitted].

Engineering and Physical Sciences Research Council

MINISTRY OF DEFENCE

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) and the MOD University Defence Research Centre on Signal Processing (UDRC).